Spin-on-glass smoothing of diamond-turned fly-eye illumination mirrors

Farhad Salmassi.¹ Patrick P. Naulleau.¹ Christopher N. Anderson.² Eric M. Gullikson¹ ¹ CXRO, Lawrence Berkeley National Lab; ² University of California, Berkeley

MOTIVATION

- Fly-eye mirrors serve as effective homogenizing elements in illumination systems
- Diamond turning technology enables rapid low-cost fabrication of complex optics such as fly-eye mirrors
 - Illuminator optic figure specs readily achieved, however, surface finish inadequate for EUV optics
- Post-fabrication smoothing of diamond-turned optics is required to use these optics in the EUV

PROCESS OVERVIEW

- Start with commercial diamond-turned part
- Coat with 100-nm layer of HSQ spin-on-glass
- Cure in UV-ozone oven
- Repeat coat and cure steps 5 times
- Coat with conventional EUV multilayer
- Thinner HSQ process selected due to concerns of loss of fidelity on shallow fly-eye lenslets

RESULTS

- Roughness reduced from 6.6 nm to 0.45 nm
- Figure preserved
 - Final slope error <40 μ rad (spec = 1 mrad)
- 64% reflectivity, 0.57-nm bandwidth achieved
- Components successfully integrated into upgraded MET illuminator
 - ~3x increase in uniform field size

DATA

 AFM images before and after smoothing with 500-nm of HSQ. RMS roughness reduced from 6.6 nm to 0.45 nm

 After AFM image rescaled

 Micromap images of a single lenslet before and after smoothing with 500-nm of HSQ

BACKGROUND

- Spin-on coatings have been used in the past to smooth simple diamond-turned optics
 - Polyimid ~3-μm thick

Schematic of EUV fly-eye illuminator element (see

- Soufli et al, Proc. SPIE 5193, 98 (2004)
- HSQ (spin-on-glass) ~100-500 nm thick
 - Salmassi et al, Appl. Opt. 45, 2404 (2006)
- Fly-eye comprised of several small lenslets
 - Used as field integrating device for improved illumination uniformity
 - In our application each lenslet is small and shallow cylinder (~500-μm wide, 1-μm deep)

Non-uniform incoming

beam

- Comparison of average sag across single lenslet before and after smoothing and design.
- · Good fidelity observed both from the diamond-turning process and smoothing procedure

- Single lenslet average slope
- · Effective smoothing obtained with low-frequency slope error compared to design $< 40 \mu rad$

 Final illumination pattern at mask

· Example printed fullfield pattern on wafer

SUMMARY

- Spin-on-glass smoothing effective for highly asymmetric fly-eye parts
- Roughness reduced from 6.6 nm to 0.45 nm
- Shallow 1-μm deep design features accurately preserved
- 64% EUV reflectivity achieved from diamond-turned fly-eye element

ACKNOWLEDGEMENTS

- We thank Kim Dean of SEMATECH for programmatic support
- Diamond-turned optics provided by NU-TEK Precision Optical Corp, Aberdeen MD
- Funding provided by SEMATECH

poster by Anderson et al. for details)